BRUNEL UNIVERSITY LONDON

Micro-Nano Manufacturing

Ph.D  |  Placement Year:   No

Research students are welcomed to Brunel as valued members of our thriving, research-intensive community. A research degree provides the opportunity to investigate a topic in depth, and contribute new knowledge to your discipline. A PhD involves demonstrating through original research or other advanced scholarship the creation and interpretation of new knowledge, a systematic acquisition and understanding of a substantial body of knowledge at the forefront of an academic discipline or professional practice, the ability to conceptualise, design and implement a project for the general of new knowledge, applications or understanding at the forefront of the discipline. Both full-time (3 years) and part-time (6 years) study routes are available.

Research profile

Within the Micro-Nano Manufacturing theme, our research and development focuses on knowledge-based approaches to ultra-precision and micro-manufacturing. This consists of three key areas of research activity. The first is ‘top-down’ ultraprecision and micro- or nano-manufacturing through the integration of high-precision machines, smart tooling and micro-cutting mechanics and physics. Then we have ‘bottom-up’ ultraprecision as well as micro- and nano-manufacturing through molecular manufacturing with application to chemical engineering, pharmaceutical industry and 3D-printing fabrication. Finally, we look at multiscale multi-physics based modelling and analysis, which provides the essential foundation for both top-down and bottom-up ultraprecision and micro- or nano-manufacturing.

More specifically, the expertise in our theme covers around 20 areas. We are looking into the prospects for several innovative types of manufacturing: sustainable manufacturing and systems, e-manufacturing, global manufacturing, micro- and nano-manufacturing, smart tooling and manufacturing, CAD and digital manufacturing and energy-efficient manufacturing. We also examine individual processes within manufacturing on a smaller scale, conducting research into simulations, system and multiscale modelling, multi-physics based modelling and engineering design and analysis. We then look at other stages in the process: condition monitoring and control, ultraprecision machining and the design of precision and micro-machines. Investigations into metrology and robotics in manufacturing are an important part of our work, and have great relevance to the sector – as does our industrial-facing work on business process engineering and the management of supply chains, technology and innovation. Finally, we have special projects examining electrical discharge machining (EDM) processes and the manufacture of integrally bladed rotors.

Programme description

Research students are welcomed to Brunel as valued members of our thriving, research-intensive community. A research degree provides the opportunity to investigate a topic in depth, and contribute new knowledge to your discipline. A PhD involves demonstrating through original research or other advanced scholarship the creation and interpretation of new knowledge, a systematic acquisition and understanding of a substantial body of knowledge at the forefront of an academic discipline or professional practice, the ability to conceptualise, design and implement a project for the general of new knowledge, applications or understanding at the forefront of the discipline. Both full-time (3 years) and part-time (6 years) study routes are available.

Research profile

Within the Micro-Nano Manufacturing theme, our research and development focuses on knowledge-based approaches to ultra-precision and micro-manufacturing. This consists of three key areas of research activity. The first is ‘top-down’ ultraprecision and micro- or nano-manufacturing through the integration of high-precision machines, smart tooling and micro-cutting mechanics and physics. Then we have ‘bottom-up’ ultraprecision as well as micro- and nano-manufacturing through molecular manufacturing with application to chemical engineering, pharmaceutical industry and 3D-printing fabrication. Finally, we look at multiscale multi-physics based modelling and analysis, which provides the essential foundation for both top-down and bottom-up ultraprecision and micro- or nano-manufacturing.

More specifically, the expertise in our theme covers around 20 areas. We are looking into the prospects for several innovative types of manufacturing: sustainable manufacturing and systems, e-manufacturing, global manufacturing, micro- and nano-manufacturing, smart tooling and manufacturing, CAD and digital manufacturing and energy-efficient manufacturing. We also examine individual processes within manufacturing on a smaller scale, conducting research into simulations, system and multiscale modelling, multi-physics based modelling and engineering design and analysis. We then look at other stages in the process: condition monitoring and control, ultraprecision machining and the design of precision and micro-machines. Investigations into metrology and robotics in manufacturing are an important part of our work, and have great relevance to the sector – as does our industrial-facing work on business process engineering and the management of supply chains, technology and innovation. Finally, we have special projects examining electrical discharge machining (EDM) processes and the manufacture of integrally bladed rotors.

Key Modules
Module & Subject
Entry Requirements
  • A minimum score of 60%- 70% or GPA 2.8/4 - 3.4/4. Offers within the grade range are determined by the higher education institution attended.
  • IELTS: 6.5 (min 6 in all areas)
  • Pearson: 58 (51 in all subscores)
  • BrunELT: 65% (min 60% in all areas)
Foundation Campus
No Foundation
Course Option
Course Duration: 3 years
Course Fee:  18000.00
Course Level:  POSTGRADUATE
Application Deadline 
International Student:   (15,July)
Location
Country:  UNITED KINGDOM
Campus Location:  Brunel University London, Kingston Lane Uxbridge, Middlesex UB8 3PH
Intake Deadline
SEPTEMBER